Современные информационные технологии и ИТ-образование

Научный журнал

Том 2 (№ 11)

Москва
2015
Современные информационные технологии и ИТ-образование. Т. 2 (№ 11), 2015. - 614 с. (ISSN 2411-1473)

Журнал «Современные информационные технологии и ИТ-образование» включен в наукометрическую базу «Российский индекс научного цитирования» с размещением полнотекстовых версий в научной электронной библиотеке eLIBRARY.RU. URL: http://elibrary.ru/title_about.asp?id=52785

Издание осуществлено при финансовой поддержке Российского фонда фундаментальных исследований (Грант РФФИ № 15-07-20760, э)

Учредитель:
Фонд содействия развитию интернет-медиа, ИТ-образования, человеческого потенциала «Лига интернет-медиа»

Издатель:
Фонд содействия развитию интернет-медиа, ИТ-образования, человеческого потенциала «Лига интернет-медиа»

Адрес редакции:
119991, г. Москва, ГСП-1, Ленинские горы, д. 1, стр. 52, факультет ВМК МГУ имени М.В. Ломоносова, каб. 375. E-mail: sukhomlin@mail.ru, тел./факс (495) 939-46-26.

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор). Свидетельство о регистрации средства массовой информации ПИ № ФС77-61433 от 10 апреля 2015 г. Издается с 2005 года. Выходит 1 раз в год.

Редакционная коллегия журнала:
Главный редактор:
Сухомлин В.А. - доктор технических наук, профессор, заведующий лабораторией ОИТ факультета ВМК МГУ имени М.В. Ломоносова, Президент Фонда «Лига интернет-медиа»;

Члены редакционной коллегии:
Веремей Е.И. - доктор физ.-мат. наук, профессор, СПбГУ;
Гергольд В.П. - доктор физ.-мат. наук, профессор, ННГУ им. Н.И. Лобачевского;
Самуйлов И.Е. - доктор филол. наук, профессор, РГПУ;
Калиниченко Л.А. - доктор филол. наук, профессор, МГУ им. М.В. Ломоносова;
Лугачев М.И. - доктор экономических наук, профессор, МГУ имени М.В. Ломоносова;
Любецкий В.А. - доктор физ.-мат. наук, профессор, ИППИ РАН им. А.А. Харкевича;
Нечаев В. В. - доктор технических наук, профессор, МИРЭА;
Поспелов М.А. - доктор филол. наук, вед. науч. сотр. ИППИ РАН им. А.А. Харкевича;
Язвин А.В. - доктор физ.-мат. наук, декан факультета ПМиК, профессор, ТвГУ;
Никитов Д.Е. - кандидат физ.-мат. наук, с.н.с. факультета ВМК МГУ имени М.В. Ломоносова;
Зубарева Е.В. - кандидат пед. наук, доцент, вед. науч. сотр. факультета ВМК МГУ имени М.В. Ломоносова;
Сотников М.В - кандидат физ.-мат. наук, доцент СПбГУ.

Статьи, поступающие в редакцию, рецензируются. За достоверность сведений, изложенных в статьях, ответственность несут авторы публикаций. Мнение редакции может не совпадать с мнением авторов материалов. При перепечатке ссылка на журнал обязательна. Материалы публикуются в авторской редакции. При перепечатке и цитировании материала ссылка на журнал «Современные информационные технологии и ИТ-образование» обязательна.

© Современные информационные технологии и ИТ-образование, 2015
Многоуровневые модели окружающей среды в метаполисах
Васильев А.И., Тархов Д.А., Шемякина Т.А.
Модель неизотермического химического реактора на основе параметрических нейронных сетей. Гибридный метод
Васильев А.И., Тархов Д.А., Шемякина Т.А.
Мезо-уровневая нейросетевая модель загрязнения атмосферного воздуха Санкт-Петербурга по данным мониторинга
Зыкин А.В., Запорожец Д.Н.
Пакет прикладных программ для моделирования и решения процессов с использованием аппарата вариационных уравнений
Бабичева Т.С.
Транспортные потоки: математическое и имитационное моделирование
Идрисова Д.И., Каверзева Т.Т., Тархов Д.А., Лазовская Т.В.
Моделирование распределения опасного вещества в тупиковом тоннеле с использованием нейросетевого подхода
Пышкин А.О., Оносов И.А., Корчагин С.А., Романчук С.П., Терин Д.В.
Разработка программных средств моделирования композитных наноматериалов
Семененко М.Г.
Модель Маркова: математические аспекты и компьютерная реализация
Сенюков В.В.
О решении одной индексированной краевой задачи типа Неймана в классах метаматематических в круге функций с применением системы компьютерной математики Maple
Скрыпченко В.О., Пириякова А.П., Павловских Ю.А., Сурсова И.В., Жуков А.О., Яковлев О.В.
Аспекты создания информационной системы для обработки ионографических данных
Климов М.С., Беляков Н.И., Сизяева Н.В.
Моделирование областей устойчивости точек либрации ограниченной задачи трех тел с помощью систем компьютерной математики
Леонов С.В., Булахова Д.С., Леонов А.В., Леонов Г.С.
Конструирование гипертекстовых информационно-поисковых тезаурусов метаязыка лингвистического
Поповский В.М., Банков Д.Б.
Программный комплекс моделирования последовательности методов видеообработки для задач управления
Тархов Д.А., Сыркина А.А., Судченко А.И.
Обработка данных методом треугольных приближений
Тарасенко Ф.Д., Тархов Д.А.
Сравнительный анализ применения различных базисных функций в алгоритмах последовательного сложивания данных
Тархов Д.А., Письменя И.К., Шахамон Д.О.
Сравнение нейросетевого и классического подходов к задаче идентификации миграционных процессов
Васильев А.И., Кузнецов Е.Б., Леонов С.С.
Нейросетевой метод идентификации и анализа модели деформирования металлических конструкций в условиях ползучести
Бурцев А.А., Сидоров С.А.
Программный комплекс ДССП-ТВМ для структурированного программирования трончевой [виртуальной] машины
ПАРАЛЛЕЛЬНОЕ И РАСПРЕДЕЛЕННОЕ ПРОГРАММИРОВАНИЕ, ГРИД-ТЕХНОЛОГИИ, ПРОГРАММИРОВАНИЕ НА ГРАФИЧЕСКИХ ПРОЦЕССОРАХ
Курович Н.И., Гуменицкий Д.Г.
Безопасность сетей SDN. Классификация атак
Захаров В.Н., Муирович Р.М.
Параллельный алгоритм умноожения многомерных матриц
Тархов Д.А.¹, Шаньшин И.К.², Шаханов Д.О.³

¹Санкт-Петербургский политехнический университет Петра Великого, г.Санкт-Петербург, д.т.н., профессор кафедры высшей математики, dtarthov@gmail.com
²Санкт-Петербургский политехнический университет Петра Великого, г.Санкт-Петербург, студент института прикладной математики и механики, ivan fizik92@yandex.ru
³Санкт-Петербургский политехнический университет Петра Великого, г.Санкт-Петербург, студент института прикладной математики и механики, trupiveman@gmail.com

СРАВНЕНИЕ НЕЙРОСЕТЕВОГО И КЛАССИЧЕСКОГО ПОДХОДА К ЗАДАЧЕ ИДЕНТИФИКАЦИИ МИГРАЦИОННЫХ ПРОЦЕССОВ

КЛЮЧЕВЫЕ СЛОВА
Социодинамика, миграция, динамические системы, нейронные сети.

АНОНТАЦИЯ

Рассмотрены методы решения обратной задачи моделирования миграционных потоков. Проведён сравнительный анализ классического подхода (основанного на дискретизации и линейной регрессии) и подхода, основанного использования нейронных сетей.

ВВЕДЕНИЕ

Имеются две миграционные модели в виде [1]:

\[
\begin{align*}
\frac{dx}{dt} &= sh(kx + k_1y) - x \cdot ch(kx + k_1y) \\
\frac{dy}{dt} &= sh(k_2x + k_2y) - y \cdot ch(k_2x + k_2y)
\end{align*}
\]

(1)

\[
\begin{align*}
\frac{dx}{dt} &= (k - 1)x + k_1y \\
\frac{dy}{dt} &= k_2x + (k - 1)y
\end{align*}
\]

(2)

Здесь (1) исходная нелинейная, а так же линеаризованная в окрестности нулевого положения равновесия - система (2). На основе этих моделей [1] можно построить прогноз миграционной динамики. Для этого необходимо определить коэффициенты моделей по имеющимся данным.

Рассмотрим три способа идентификации коэффициентов рассматриваемых моделей.

Первый способ подразумевает решение системы (2) аналитически, а затем определение коэффициентов по найденному соответственно решению и данных. У такого подхода есть два недостатка: невозможность его распространения на нелинейную систему (1) и необходимость решить систему линей при распространении на модели более высокого порядка.

Второй способ представляет собой дискретизацию системы (2) и определение её коэффициентов по формулам для двумерной линейной регрессии. Такой подход можно распространить на более высокие порядки, но случай нелинейной системы (1) требует построения нелинейной регрессии, что также снижает его универсальность.

Третий способ подразумевает использование нейронной сети [2,3]. Для этого можно использовать модель для достаточно большого набора параметров, затем обучить нейронную сеть для определения каждого из них по данным, после этого вычислить необходимых коэффициентов модели по наблюдаемым сведений. Для этого подхода имеет ряд преимуществ, например, большую универсальность – его применение в линейном и нелинейном случае практически не различается.

РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ

Приведены следующие обозначения: красным цветом выделен расчетный график, синим -
теоретический. Рассматривался период прогноза в 5 раз большший, чем период времени, для которого строилась модель.

Рассмотрим сначала случай, когда период времени, для которого строится модель, составляет от нуля до единицы.

Приведем результаты применения второго и третьего методов для значений коэффициентов $k = 1.2; k_1 = -0.5; k_2 = 0.5$.

1) Второй метод (линейная регрессия).

При количестве трех входных точек = 0, 0.5 и 1, мы получили сильное расхождение расчетной модели с теоретической, однако форма графика не искажена, что легко видно из рис.1.

![Рисунок 1](image1)

![Рисунок 2](image2)

С увеличением количества точек до 10 в окрестности начала координат имеем неплохое приближение, но погрешность все еще велика (рис.2). Далее, увеличивая количество точек до 100, мы достигаем отличной точности, графики функций теоретической и расчетной модели практически совпадают. Это хорошо видно на рис.3.

![Рисунок 3](image3)

2) Метод нейросетевого моделирования. Сети обучались для набора из 300 значений.
параметров из области $k \in [0,2]$; $k_1 \in [-1,0]$; $k_2 \in [0,1]$.

Для начала выберем количество нейронов, равное пяти. Модель, полученная с использованием такой сети по трём точкам из интервала $[0,1]$ (момент времени 0, 0.5 и 1) отражает основную тенденцию, однако существует значительная погрешность и искажена скорость миграционной динамики, что можно увидеть на рис.4.

Однако, если использовать уравнения (1), то есть нелинейную модель, точность значительно лучше и искажение скорости несущественно (рис.5). Это является преимуществом нейронных сетей: нелинейная модель, которая является более точной, аппроксируется лучше. При увеличении числа нейронов до 15 достигается хорошая точность для случаев нелинейной модели, особенно в окрестности начала координат (рис.6). Также хорошо отражена основная тенденция миграции и её скорость.

Далее, увеличив размер нейронной сети до 25-ти нейронов, при работе с линейной моделью, увидим, что она очень хорошо приближает теоретическую модель, результат сопоставим с результатом метода линейной регрессии при ста точках (рис.7).
Теперь рассмотрим интервал времени, увеличенный в 10 раз. Значения коэффициентов \(k, k_1, k_2 \) остались прежними.

1) Второй метод (линейная регрессия).
Начнем рассмотрение со случая 100 точек. Исходя из рис. 8 можно сделать вывод, что погрешность становится очень большой, это говорит о том, что по 100 точкам не получается хорошо прогнозировать тенденцию миграции на достаточно большой промежуток времени (напомним, что рассматривался период прогноза в 5 раз больший, чем период времени, для которого строился прогноз) и, чтобы достичь приемлемого приближения, необходимо увеличение количества точек.

Рисунок 8 Рисунок 9

При увеличении числа точек до 1000 точность стала достаточно высока, особенно в сравнении с моделью, построенной по 100 точкам (рис.9). Однако в подобных задачах трудно получить такое большое количество входных данных.

2) Метод нейросетевого моделирования.
Рассмотрим случай нейронной сети, состоящей из 15-ти нейронов, нейросетевая модель.
Если увеличить период времени в 10 раз, то точность приближения падает, но при этом расчетная модель хорошо повторяет вид графика функции теоретической модели и общая тенденция миграции сохранена (рис.10).

Рисунок 10 Рисунок 11
Увеличим размер нейронной сети до 25-ти нейронов. Для случая линейной модели результат будет несколько раз лучше линейной регрессии, построенной по ста точкам, но уже, чем по тысяче точек, погрешность достаточно велика, однако это не так важно, поскольку линейная модель сама по себе имеет некоторую неточность (рис. 11). При работе с нелинейной моделью, мы достигаем даже при увеличении периода времени в 10 раз, мы получаем отличное приближение, причем на всех участках, что видно на рисунке 12.

ВЫВОДЫ

Исходя из приведенных данных, можно сделать несколько выводов:

- Нейронные сети при достаточном количестве нейронов (в данной задаче - больше или равном 25) позволяют хорошо восстанавливать модель. Для того чтобы достичь этой точности в использовании линейной регрессии, необходимо большое количество входных данных. Кроме того, такой метод вызывает существенное затруднение для случая нелинейной модели, которая является более точной;

- Нейронные сети могут работать как и линейной моделью, так и с нелинейной, точность аппроксимации существенно зависит от количества нейронов, и не сильно - от количества входных данных, что дает нейронным сетям большое преимущество над методом линейной регрессии. У нейронных сетей имеется ряд заметных преимуществ по сравнению с другими методами приближения и прогнозирования: универсальность, точность, способность к обучению. Нейронные сети уже являются универсальным методом решения многих сложных прикладных задач, полученные результаты лишь подтвердили это.

Проведенные вычислительные эксперименты показывают, что применение нейронных сетей для решения обратной задачи моделирования миграционных потоков является оптимальным способом.

Благодарность: Статья подготовлена по результатам исследования, выполненного при финансовой поддержке гранта Российского Научного Фонда (проект 14-38-00009) «Программно-целевое управление комплексным развитием Арктической зоны РФ (Санкт-Петербургский политехнический университет Петра Великого).”

Литература